Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(3): 3204-3216, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284095

RESUMO

In vitro protein refolding is one of the critical unit operations in manufacturing recombinant peptides expressed using Escherichia coli as host cells. This study is focused on designing size exclusion chromatography-assisted in vitro refolding process for biosimilar recombinant parathyroid hormone. Inclusion bodies (IBs) of recombinant parathyroid hormone were solubilized at higher pH, and in vitro refolding was performed using size exclusion chromatography. In the first part of the investigation, DoE-based empirical optimization was performed to achieve a higher refolding yield for a biosimilar recombinant parathyroid hormone. The effect of solubilized inclusion body (IB) feed volume, concentration of IBs, and residence time on in vitro refolding of recombinant teriparatide was studied using the Box-Behnken design. Size exclusion chromatography (SEC)-assisted in vitro refolding was performed at 8 °C at pH 10.5 by using 20 mM Tris buffer. The maximum refolding yield of 98.12% was achieved at feed volume (12.5% of CV) and 20 mg/mL inclusion body (IB) concentration with a residence time of 50 min and a purity of 66.1% based on densitometric analysis using SDS-PAGE. In the latter part of the investigation, the general rate mechanistic model framework for size exclusion chromatography was developed and validated with the experimental results. The developed model helped in the accurate prediction of the elution volumes and product yield. The developed model also helps to predict the elution performance of a scalable column a priori. Post in vitro refolding, the formation of the native peptide structure was examined using various orthogonal analytical tools to study the protein's primary, secondary, and tertiary structures. The developed hybrid process development approach is a valuable tool toachieve high-yield, scalable refolding conditions for recombinant proteins without disulfide bonds.

2.
Int J Biol Macromol ; 249: 126037, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37516226

RESUMO

In-vitro protein refolding is one of the key rate-limiting unit operations in manufacturing of fusion proteins such as peptibodies expressed using E. coli. Dilution-assisted refolding is the most commonly used industrial practice to achieve the soluble, native functional form of the recombinant protein from the inclusion bodies. This study is focused on developing a chromatography-assisted in-vitro refolding platform to produce the biologically active, native form of recombinant peptibody. Recombinant Romiplostim was selected as a model protein for the study. A plug flow tubular reactor was connected in series with capture step affinity chromatography to achieve simultaneous in-vitro refolding and capture step purification of recombinant Romiplostim. Effect of various critical process parameters like fold dilution, temperature, residence time, and Cysteine: DTT ratio was studied using a central composite based design of experiment strategy to achieve a maximum refolding yield of selected peptibody. Under optimum refolding conditions, the maximum refolding yield of 57.0 ± 1.5 % and a purity of over 79.73 ± 3.4 % were achieved at 25-fold dilution, 15 °C temperature, 6 h residence time with 6 mM and 10 mM of cysteine and DTT, respectively. The formation of native peptibody structure was examined using various orthogonal analytical tools to study the protein's primary, secondary, and tertiary structure. The amino acid sequence for the disulfide-linked peptide was mapped using collision-induced dissociation (CID) to confirm the formation of interchain disulfide bonds between Cys7-Cys7 and Cys10-Cys10 similarly for intra-chain disulfide bonds between Cys42-Cys102, and Cys148-Cys206. The developed protocol here is a valuable tool to identify high-yield scalable refolding conditions for multi-domain proteins involving inter-domain disulfide bonds.


Assuntos
Cisteína , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Cisteína/metabolismo , Proteínas Recombinantes/química , Redobramento de Proteína , Cromatografia de Afinidade/métodos , Dissulfetos/química , Dobramento de Proteína
3.
Nat Commun ; 11(1): 1181, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132542

RESUMO

Emerging applications such as the Internet-of-Things and more-electric aircraft require electronics with integrated data storage that can operate in extreme temperatures with high energy efficiency. As transistor leakage current increases with temperature, nanoelectromechanical relays have emerged as a promising alternative. However, a reliable and scalable non-volatile relay that retains its state when powered off has not been demonstrated. Part of the challenge is electromechanical pull-in instability, causing the beam to snap in after traversing a section of the airgap. Here we demonstrate an electrostatically actuated nanoelectromechanical relay that eliminates electromechanical pull-in instability without restricting the dynamic range of motion. It has several advantages over conventional electrostatic relays, including low actuation voltages without extreme reduction in critical dimensions and near constant actuation airgap while the device moves, for improved electrostatic control. With this nanoelectromechanical relay we demonstrate the first high-temperature non-volatile relay operation, with over 40 non-volatile cycles at 200 ∘C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...